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Lawrence Livermore National Laboratory

P.O. Box 808, Livermore, CA 94551

ABSTRACT

We describe a method for simultaneously determining the α-ratio and keff for fissile materials using fast neu-
trons. Our method is a generalization of the Hage-Cifarrelli method for determining keff for fissile assemblies
which utilizes the shape of the fast neutron spectrum. In this talk we illustrate the method using Monte Carlo
simulations of the fast neutrons generated in PuO2 to calculate the fast neutron spectrum and Feynman correla-
tions.

INTRODUCTION

Methods based on time-correlated signals have been developed over many years to characterize fissile materials.
For example, we can record sequences of thermal neutrons using 3He tubes or similar neutron detectors, and
determine features of the measured object by segmenting the recorded signals into time windows, and counting
how many neutrons arrive in each window to build statistical count distributions. Because 3He tubes only mea-
sure thermal neutrons, the high energy neutrons generated by the Pu fission and α-decay cannot be measured
immediately, but only after tens of microseconds, which is the time it takes for a fast neutron to thermalize in the
moderating material and to eventually be captured by 3He. Therefore, the time windows must be of the order
of tens to hundreds of microseconds to pick up any correlations in the signal. Unfortunately, for strong neutron
sources such as Pu, many fission chains will be generated within such long time windows, and the correlation
signal will not uniquely consist of single fission chains, but predominantly of several fission chains overlapping
in the window. This makes the signal more difficult to extract information out of the measurement.

Liquid scintillators on the other hand, can detect fission neutrons at their initial high energy, because the
reaction used for detection is inelastic scattering of neutrons primarily on hydrogen, producing a recoil proton
from which scintillation light is promptly produced. In contrast to 3He tubes which can hardly detect any
fast neutrons, liquid scintillators cannot detect any neutrons below 1 MeV, because the recoil proton for such
neutrons do not produce enough scintillation light to distinguish them from the light produced by background
gamma-ray interactions with the scintillator. At energies above 1 MeV, neutrons travel at a fraction of the speed
of light, and can thus be detected within 100 nanoseconds for detections systems of the order of 1 meter in size.
One no longer needs to open time windows as long as 100 µs to pick up the correlation signal with 3He, but
only as long as 100 ns. These shorter time windows will greatly reduce the number of overlapping chains within
a time window and we will be in a regime where time windows encompass neutrons from single or mostly a
few fission chains.

This report describes our efforts to develop algorithms to distinguish plutonium metal from plutonium oxide
using liquid scintillators for fast neutron detection. We tested our algorithms using Monte Carlo simulations
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Figure 1: Object in the middle of the 77 liquid scintillator array.

where we assumed that a plutonium metal object is located in the middle of the array of liquid scintillators
depicted in Fig. 1. If the object consists of multiplying material, each spontaneous fission can be the source of a
fission chain. Particles produced in either the spontaneous fissions or induced fissions of the fission chain travel
outward towards the liquid scintillator cells, where they are detected with a known efficiency. Additionally,
gamma-rays are emitted as the plutonium α-decays. This source of gamma-rays is many orders of magnitude
stronger than the fission gamma-rays.

An important difference between Pu metal and Pu oxide is that PuO2 is a source of single neutrons emitted
randomly. In PuO2, the alpha particles produced by the α-decay of plutonium carry enough energy — ap-
proximately 5 to 5.5 MeV — to cause 18O to emit a single neutron via an (α ,n) reaction when the α-particle
gets to that nucleus. Because of the random nature of the α-decay, single neutrons are thus emitted randomly.
These single neutrons are emitted at a rate comparable to the one of spontaneous fission neutrons. Their energy
averages 1.9 MeV.

Density is another difference between plutonium metal and plutonium oxide. While the metal has a density
of 15.92 g/cm3, the oxide density is only 3 g/cm3.

This knowledge of the differences between the physical properties of the two chemical forms of plutonium
will allow us to build algorithms to distinguish them unambiguously.

DESCRIPTION OF PU OBJECTS SIMULATED

To start with, we considered two objects spherical in shape, of identical total weights equal to 5.5366 kg, and
of identical outer radii equal to 7.62 cm. This outer radius was chosen such that a plutonium oxide ball of that
radius weighs exactly 5.5366 kg. Because plutonium metal has a much higher density, it will form a hollow
spherical shell. The complete characteristics of the 2 objects are given in table 1 in terms of geometry, and in
table 2 in terms of isotopic composition.

Knowing the neutron yields of the different isotopes (table 3) composing the 2 objects, we calculated that
the rate of spontaneous fissions were 158,937 spontaneous fissions/s for the plutonium metal, and 140,170 spon-
taneous fissions/s for the plutonium oxide.

A large number of gamma-rays are emitted by the α-decay of plutonium. The α-particles emitted by the
plutonium α-decay carry between 4.89 and 5.49 MeV depending on the isotope. In the case of PuO2, if the
α-particle hits oxygen, it can cause a (α ,n) reaction. For a 5.2 MeV α-particle incident on a thick oxygen target,
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Table 1: Geometric characteristics of the plutonium metal and oxide objects.

Object Pu metal Pu oxide
shape spherical shell sphere
density [g/cm3] 15.92 3.
weight [g] 5536.6 5536.6
inner radius [cm] 7.10768 -
outer radius [cm] 7.62 7.62

Table 2: Weights and neutron yields of isotopes composing the Pu metal and PuO2 objects.

Pu metal PuO2

Isotope weight [g] yield [n/s] s.f. yield [s.f./s] weight [g] yield [n/s] s.f. yield [s.f./s]
16O - - - 655.0 - -
17O - - - 0.2560 - -
18O - - - 1.320 - -

238Pu 0.7895 2045. 925.3 0.6963 1803. 816.0
239Pu 5198. 113.3 52.45 4584. 99.94 46.27
240Pu 332.1 338741. 156824. 292.9 298743. 138307.
241Pu 27.22 1.36 0.6044 24.01 1.20 0.5335
242Pu 1.418 2439. 1134.4 1.251 2151. 1000.4

241Am 0.3970 0.4684 0.1455 0.3501 0.4131 0.1283
Total 5536.6 343340. 158937. 5536.6 302799. 140170.

Table 3: Neutron yields of plutonium and americium isotopes of interest.

Isotope Fission yield Spontaneous
[n/s/g] multiplicity

238Pu 2.59E+3 2.21
239Pu 2.18E-2 2.16
240Pu 1.02E+3 2.16
241Pu 5.00E-2 2.25
242Pu 1.72E+3 2.15
241Am 1.18E+0 3.22

the (α ,n) reaction on oxygen will emit neutrons of mean energy 1.9 MeV, and with a probability of 5.9 neutron
producing interactions for every 108 α-particles. The probability of interaction is lower in PuO2 because of
the lower atom fraction of oxygen compared to a thick oxygen target. We can compute the strength of the
(α ,n) source using the code SOURCE-4C [3]. The spectrum of the neutrons emitted from the (α ,n) reactions
is shown in Fig. 2, their emission rate is 127.1 neutrons/s-cm3. Because liquid scintillators are transparent to
neutrons under 1 MeV, it is very important to account for the full energy spectrum of the (α ,n) neutrons, instead
just taking the mean energy of 1.9 MeV. Experience shows that assigning the full 1.9 MeV energy to all of the
127.1 neutrons/s-cm3 would result in an artificially inflated efficiency, and an artificially deflated multiplication.
For the PuO2 volume of 1853 cm3, the total emission rate is 235,516 neutrons/s, which is 78% of the rate of
neutrons due to spontaneous fissions in plutonium. Another reference [4] gave the values in table 4 for the (α ,n)
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neutron yields per gram of plutonium. This table give a total neutron output of 226,254 neutrons/s for our PuO2
sphere, which is very similar to the values obtained with the code SOURCES-4C. For the purpose of this work,
we used the (α ,n) neutron rate given by the code SOURCE-4C.
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Figure 2: Energy distributions of neutrons from the (α ,n) reactions on O and F in PuO2, from 240Pu spontaneous
fission and from 239Pu induced fission.

Table 4: (α ,n) neutron yields of isotopes composing the PuO2 ball, per gram of plutonium.

Isotope weight (α ,n) yield (α ,n) yield
[g] [n/s/(g of Pu)] [n/s]

238Pu 0.6963 1.9028 9330.304
239Pu 4584. 35.62 174661.245
240Pu 292.9 8.42 41287.133
241Pu 24.01 6.364e-3 31.206
242Pu 1.251 5.10e-4 2.501

241Am 0.3501 0.192 941.464
Total 4903. 46.14 226254
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MOMENT EQUATIONS WITH DIFFERENT MULTIPLICATIONS AND EF-
FICIENCIES FOR (α ,n) NEUTRONS AND FISSION NEUTRONS

Simulations of the 2 objects were performed for a real time of 2 minutes. The times of arrival of the neutrons
in each of the liquid scintillator cells were recorded. Randomly splitting the sequence of time tags into N
segments of length T — where T is of the order of nanoseconds to hundreds of microseconds —, one can count
how many neutrons arrive in the first segment, how many in the second segment, in the third one, etc. and
build a distribution bn(T ) of the number n of neutrons arriving in the segments of length T . For the sake of
illustration, one such count distribution is shown in Fig. 3. By repeating this procedure for segments of different
lengths T , multiple count distributions bn(T ) can be obtained.

These count distributions bn(T ) can be used to determine the strength Fs of the spontaneous fission sources
in the object, the efficiency ε of the liquid scintillator array, the multiplication M of the multiplying object, as
well as the rate of neutrons from the (α ,n) reactions. This will be shown by way of the following three equations
for thermal neutron detectors. One can show theoretically, the first moment of the count distribution bn(T ) can
be written as

C̄ (T ) = εq(M)Mν̄sFs (1+α)T (1)

where Fs is the strength of the spontaneous fission source in units of spontaneous fissions per second, α is
the ratio of neutrons produced by sources emitting single neutrons, to neutrons produced by sources emitting
multiple neutrons simultaneously. α is such that αεq(M)Mν̄sFsT is the number of measured neutrons produced
by sources emitting single neutrons at a time. q(M)M is usually referred to as the escape multiplication and is
given by

q(M)M = M− (M−1)/ν̄ (2)

The symbols ν̄ and ν̄s are the average numbers of neutrons emitted per induced and spontaneous fissions,
respectively. They can be written as ν̄ =

∑8
n=1 nCn and ν̄s =

∑8
n=1 nCs

n where Cn and Cs
n are the probabilities of

emitting n neutrons per induced and spontaneous fissions, respectively. The upper limit of 8 on the summation
sign is the largest number of neutrons that known isotopes produce per fission. In other words, Cn is zero for n
greater than 8. It should be noted that the distribution Cn depends on the energy of the neutron inducing fission.

We see in Fig. 2 that the energies of the neutrons from the reaction (α ,n) on oxygen are typically higher
than the fission neutron energies. Indeed, the mean fission neutron energy is about 1 MeV while the mean
(α ,n) neutron energy on oxygen is 2 MeV. This has two effects: (a) the average number of fission neutrons ν̄α

due to (α ,n) neutrons will be higher than the average number of fission neutrons due to fission neutrons ν̄ or
spontaneous fissions ν̄s, resulting in two different multiplications for the (α ,n) neutron initiated fission chains
and the spontaneous fission initiated fission chains. (b) The detection efficiencies for (α ,n) neutrons εα and
fission neutrons ε f will be different as well. One can indeed expect a much higher detection probability for the
(α ,n) neutrons with a higher mean energy than for the fission neutrons.

To account for this effect, we follow Hage and Cifarelli [5, 6] and rewrite Eq. 1 as

C̄ (T ) = [ε f q f (M f ) [M f +α (Mα −1)] ν̄sFs + εαqα (Mα)αν̄sFs]T (3)

where ε f q f and εαqα are detection efficiencies for fission and (α ,n) neutrons, while M f and Mα are their
neutron multiplications. α is the usual parameter specifying the strength of (α ,n) neutron emission relative to
the rate of neutron emission from spontaneous fission. The efficiencies and neutron multiplication are in general
different for fission and (α ,n) neutrons because the fission and (α ,n) neutrons have different energy spectra.
Indeed for the case of PuO2 the efficiency for detecting the oxygen (α ,n) neutrons in our liquid scintillators will
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be significantly higher than for fission neutrons, because the energy spectrum for the (α ,n) neutrons is peaked
around 2 MeV where the intrinsic efficiency of the detector is relatively large, whereas almost half the fission
neutrons have energies below 1 MeV where the intrinsic efficiency of our liquid scintillators is very small.

The slope of Eq. 3 is the average count rate

R1 = ε f q f (M f ) [M f +α (Mα −1)] ν̄sFs + εαqα (Mα)αν̄sFs (4)

The second and third moments of the bn (T ) distribution, normalized by the count rate, are

Y2F (T ) =
[ε f q f (M f )M f ]

2

ε f q f (M f ) [M f +α (Mα −1)]+αεαqα

[D2s +[(M f −1)+α (Mα −1)]D2]

(
1− 1− e−λT

λT

)
(5)

Y3F (T ) =

[
ε f q f

(
M f
)

M f
]3

ε f q f
(
M f
)[

M f +α (Mα −1)
]
+αεα qα

[
D3s +

[(
M f −1

)
+α (Mα −1)

]
D3
](

1− 3−4e−λT + e−2λT

2λT

)

+2

[
ε f q f

(
M f
)

M f
]3

ε f q f
(
M f
)[

M f +α (Mα −1)
]
+αεα qα

(
M f −1

)[
D2sD2 +

[(
M f −1

)
+α (Mα −1)

]
D2

2
](

1− 2− (2+λT )e−λT

λT

)
(6)

where λ is a time constant related to the transport of the neutrons in the measured object and the detection

system, D2s, D2, D3s and D3 depend on nuclear data, and are given by D2s =
P8

n=2 (n
2)Cs

n
ν̄s

and D2 =
P8

n=2 (n
2)Cn

ν̄
,

D3s =
P8

n=3 (n
3)Cs

n
ν̄s

and D3 =
P8

n=3 (n
3)Cn

ν̄
.

Because the fission cross-section is fairly flat across all the energies of interest, the neutron multiplications
for fission and (α ,n) neutrons are nearly the same. Therefore in the following we will set Mα = M f ≡M. This
system of equations 4 through 6 has 5 unknown parameters: M, ε f q f , εαqα , α , Fs.

Defining R2F and R3F as the asymptotical values of Y2F (T ) and Y3F (T ), and following Cifarelli-Hage, we
can contemplate writing the ratio R3F/R2

2F to determine the multiplication M:

R3F

R2
2F

=
2(M−1)D2 [D2s +(1+α)(M−1)D2]+D3s +(1+α)(M−1)D3

[D2s +(1+α)(M−1)D2]
2

(
R1

ε f qMν̄sFs

)
(7)

Unfortunately, we cannot use expression 7 directly to determine the multiplication because of the presence of
too many unknown parameters: M, α , ε f , and εα .

We can replace the two efficiencies by a single parameter by making use of the theoretical fission and (α ,n)
spectra shown in Fig. 2 to calculate the ratio εα /ε f . Calling this ratio rε we have

R3F

R2
2F

=
2(M−1)D2 [D2s +(1+α)(M−1)D2]+D3s +(1+α)(M−1)D3

[D2s +(1+α)(M−1)D2]
2

[[
1+α

(
M−1

M

)]
+ rε

α

M

]
(8)

The efficiency ratio rε depends on the theoretical fission and (α ,n) neutron spectra and the characteristics of
the neutron detector. For our liquid scintillators we find rε ∼1.602. Given a value for rε one can in principle
use Eq. 8 to solve for the multiplication as a function of α . Unfortunately this equation is now a cubic equation
rather than the quadratic equation in the α = 0 case considered by Cifarelli and Hage.

As an alternative we can use the observed spectrum to directly evaluate the quantity
[
1+α

(M−1
M

)]
+ rε

α

M
in Eq. 8. In particular, fitting the observed fast neutron spectrum to a sum of fission and (α ,n) spectra yields
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two coefficients whose ratio ρ should be equal to rε α

M+α(M−1) . Given this additional experimental input, one can
rewrite Eq. 8 as

R3F

R2
2F

=
2(M−1)D2 [D2s +(1+α)(M−1)D2]+D3s +(1+α)(M−1)D3

[D2s +(1+α)(M−1)D2]
2

[
1+α

(
M−1

M

)]
(1+ρ) (9)

Using the definition of ρ , we can write the following relationship between α and M:

α =
M

rε

ρ
−M +1

(10)

In the limit of small ρ , α→ ρ

rε
, while in the limit of large α , ρ→ rε

M−1 . Substituting Eq. 10 into 9, we find that
α becomes the solution of the following quadratic equation:

2D2

(
αrε

ρ
−1
)[

D2s +
(

αrε

ρ
−1
)

D2

]
+(1+α)

[
D3s +

(
αrε

ρ
−1
)

D3

]
=

1+ ρ

rε

1+ρ

R3F

R2
2F

[
D2s +

(
αrε

ρ
−1
)

D2

]2

(11)

In the next sections, we show that this equation together with the spectral information in the liquid scintillators
can be used to solve for the α ratio and the multiplication.

LIQUID SCINTILLATOR TIME CORRELATION RESULTS

Monte-Carlo simulation results for the count distribution for T=1 µs, and the 2 moments Y2F (T ) and Y3F (T )
are shown in Fig. 3 for the Pu metal sphere. The total time is shared among the 10 time gates in such a way as
to keep the errors on the Y2F (T ) values for the 10 different time gates approximately equal. Fast neutron counts
are not re-used among different time gates. The simulation corresponds to a measurement of 2 minutes, 55.23 s
contributed to the 1 µs time gate, and the remaining 64.77 s were shared between the 9 other time gates. Fig. 4
shows the results for the PuO2 sphere.
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Figure 3: Count distribution bn (T ) for the 1 µs time gate, Y2F (T ) and Y3F (T ) for the Pu metal spherical shell
and T between 3 ns and 1 µs, along with their theoretical reconstructions in light green and magenta. The set
of parameters used for the reconstructions is (M,ε f ,α)=(1.38, 6.9%, 0.00).

LIQUID SCINTILLATORS SPECTRAL INFORMATION

In this section, we show that in principle the information contained in the spectrum of energies deposited by
the fast neutrons in the liquid scintillator cells can be used to differentiate plutonium metal from plutonium
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Figure 4: Count distribution bn (T ) for the 1 µs time gate, Y2F (T ) and Y3F (T ) for the Pu oxide ball and T
between 3 ns and 1 µs, along with their theoretical reconstructions in light green and magenta. The set of
parameters used for the reconstructions is (M,ε f ,α)=(1.38, 5.8%, 0.75).

dioxide. Fig. 5 shows the spectra for simulations corresponding to two different neutron sources. The spectrum
in red is due to a trace amount of 240Pu producing spontaneous fissions, while the spectrum in blue is due
to plutonium generated α-decay particles interacting with oxygen in PuO2. One observes that the spectra of
energies deposited are significantly different. As shown in Fig. 2, the neutron spectrum for spontaneous fission
of 240Pu is similar to the neutron spectrum for induced fission of 239Pu.
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Figure 5: Distributions of energies deposited by the fast neutrons in the liquid scintillator cells for two different
neutron sources, (i) 240Pu (red) and (ii) (α ,n) neutrons produced in PuO2 (blue).

For the PuO2 ball described in tables 1 and 2, the spectrum of energies deposited by the fast neutrons is
shown in blue in Fig 6(b). One can add the two spectra shown in Fig. 5 with appropriate weights to reconstruct
the blue curve in Fig. 6(b). The optimal combination of weights is given in Fig. 6(a). By adding the 240Pu
spectrum pre-multiplied by 0.58 to the (α ,n) spectrum pre-multiplied by 0.42, one obtains the reconstruction
spectrum of energies deposited shown in red in Fig. 6(b). On the contrary, when one measures the Pu metal
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shell, the weights that are optimal for the reconstruction of the spectrum of deposited energies are 0.9986 of
the 240Pu spectrum and 0.0014 of the (α ,n) spectrum. So it seems that just measuring the spectra of energies
deposited by fast neutrons is sufficient to distinguish Pu metal and Pu oxide.
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Figure 6: (a) Factors by which the two spectra shown in Fig. 5 must be multiplied to reconstruct the spectrum
of energies deposited by the fast neutrons emitted by the PuO2 ball: 0.58 for the 240Pu spectrum and 0.42 for
the (α ,n) spectrum. (b) Spectrum of energies deposited by fast neutrons in liquid scintillator cells for the PuO2
ball (blue), along with its reconstruction (red) from the two spectra shown in Fig. 5 and the optimal weights
aside.

Setting ρ=0.72, the solution to Eqs. 10-11 with M ≥ 1 is α=0.75, M=1.38. Our solution for α is very
close to the exact value 0.78. Using Eq. 5, we can determine the value of ε f to be 5.8%, while Eq. 3 implies a
spontaneous fission source rate of 345,000 neutrons/sec. Although not exactly the same strength as the value of
302,799 given in table 2, this method gives a result within 15% of the correct answer. For the plutonium metal
shell, we find that the fitting algorithm gives ρ=0.0014. The solution to Eqs. 10-11 with M ≥ 1 is α=0.0012,
M=1.38. The value of ε f is 6.9% and the source strength is 332,000 neutrons/sec, which is off by less than 4%.

CONCLUSION

In this report, we have shown first of all that measuring the energy spectrum of the fast neutrons in the liq-
uid scintillators allows one to distinguish the two chemical forms of plutonium. In addition, combining this
information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the α-ratio without
explicitly knowing the multiplication. Given the α-ratio one can then extract the multiplication as well as the
239Pu and 240Pu masses directly from the moment equations.
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